JavaScript seems to be disabled in your browser. For the best experience on our site, be sure to turn on Javascript in your browser.
Tel: +1-832-696-8203
Email: [email protected]
Worldwide Distributors
In vitro transcription of capped mRNA with modified nucleotides and Poly(A) tail
TSA (Tyramide Signal Amplification), used for signal amplification of ISH, IHC and IC etc.
Separation of phosphorylated and non-phosphorylated proteins without phospho-specific antibody
A convenient and sensitive way for cell proliferation assay and cytotoxicity assay
Safe and sensitive stain for visualization of DNA or RNA in agarose or acrylamide gels.
Protect the integrity of proteins from multiple proteases and phosphatases for different applications.
BMH-21 is a planar heterocyclic small molecule DNA intercalator with inhibition of Pol I activity at IC50 = 0.06 µM. [1]DNA interaction is a well-recognized property for several classes of cancer drugs, which interact with the duplex DNA with three typical binding modalities, namely DNA intercalation, groove binding and covalent interactions. [1]BMH-21 intercalated into dsDNA and had binding preference towards GC-rich DNA sequences. BMH-21 had wide cytotoxic activities against human cancer cell lines, and acted in p53-independent manner, widely considered as a mediator of many cytotoxic agents. BMH-21 played as a novel agent that inhibited transcription of RNA polymerase I (Pol I) by binding to ribosomal (r) DNA that caused Pol I blockade and degradation of the large catalytic subunit of Pol I, RPA194. BMH-21 led to the dissolution of the nucleolar structure. [1] BMH-21 clearly induced p53 expression in the epithelial compartment of human prostate tissues indicating tissue permeability. [2]References:[1]. Colis L, Peltonen K, Sirajuddin P et al. DNA intercalator BMH-21 inhibits RNA polymerase I independent of DNA damage response. Oncotarget. 2014 Jun 30;5(12):4361-9.[2]. Peltonen K, Colis L, Liu H et al. Identification of novel p53 pathway activating small-molecule compounds reveals unexpected similarities with known therapeutic agents. PLoS One. 2010 Sep 27;5(9):e12996.