Home >> 8-CPT-2Me-cAMP, sodium salt
Related Products
8-CPT-2Me-cAMP, sodium salt EPAC activator, selective

Catalog No.B6816
Size Price Stock Qty
In stock
In stock
In stock

Tel: +1-832-696-8203

Email: [email protected]

Worldwide Distributors


Sample solution is provided at 25 µL, 10mM.

Quality Control

Quality Control & MSDS

View current batch:

Chemical structure

8-CPT-2Me-cAMP, sodium salt

8-CPT-2Me-cAMP, sodium salt Dilution Calculator

Concentration (start)
Volume (start)
Concentration (final)
Volume (final)


8-CPT-2Me-cAMP, sodium salt Molarity Calculator



Chemical Properties

Cas No. 634207-53-7 SDF Download SDF
Synonyms N/A
Chemical Name sodium (4aS,6S,7S,7aS)-6-(6-amino-8-((4-chlorophenyl)thio)-9H-purin-9-yl)-7-methoxytetrahydro-4H-furo[3,2-d][1,3,2]dioxaphosphinin-2-olate 2-oxide
Canonical SMILES [H][[email protected]]12COP(O[[email protected]]1([H])[[email protected]](OC)[[email protected]@H](N3C(SC4=CC=C(C=C4)Cl)=NC5=C3N=CN=C5N)O2)(O[Na])=O
Formula C17H16ClN5O6PS.Na M.Wt 507.82
Solubility <50.78mg/ml in H2O Storage Desiccate at -20°C
Physical Appearance White lyophilised solid Shipping Condition Evaluation sample solution : ship with blue ice.All other available size: ship with RT , or blue ice upon request
General tips For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.


8-CPT-2Me-cAMP, sodium salt is a selective agonist of EPAC [1].

Cyclic AMP guanine nucleotide exchange factors (EPACs) are intracellular sensors for cAMP and function as nucleotide exchange factors for the Ras GTPase homologues Rap1 and Rap2 [1].

8-CPT-2Me-cAMP, sodium salt is a selective EPAC agonist. 8-CPT-2Me-cAMP increased Rap1 activation by EPAC1. Meantime, light chain 2 (LC2) of the microtubule-associated protein MAP1A increased this response. In LC2- and EPAC1-transfected cells, 8-CPT-2Me-cAMP increased cell adhesion to laminin [1]. In Jurkat Tcells, 8-CPT-2Me-cAMP (100 μM) activated Rap1, which was not affected by H-89, a PKA inhibitor [2]. In 1-LN prostate cancer cells, 8-CPT-2Me-cAMP increased Epac1, p-AktS473 and p-AktT308 in a dose-dependent way. 8-CPT-2Me-cAMP increased p-AktS473 and AktS473 kinase activity by two-three fold. Also, 8-CPT-2Me-cAMP activated mTORC1 and mTORC2 [3].

In human prostate cancer cells, 8-CPT-2Me-cAMP increased the levels of p-cPLA2S505, COX-2 and PGE2. However, COX-2, EP4 or mTOR inhibitors inhibited this effect and reduced protein and DNA synthesis induced by Epac1. These results suggested Epac1 was a pro-inflammatory modulator and promoted cell proliferation [4].

[1].  Gupta M, Yarwood SJ. MAP1A light chain 2 interacts with exchange protein activated by cyclic AMP 1 (EPAC1) to enhance Rap1 GTPase activity and cell adhesion. J Biol Chem, 2005, 280(9): 8109-8116.
[2].  Fuld S, Borland G, Yarwood SJ. Elevation of cyclic AMP in Jurkat T-cells provokes distinct transcriptional responses through the protein kinase A (PKA) and exchange protein activated by cyclic AMP (EPAC) pathways. Exp Cell Res, 2005, 309(1): 161-173.
[3].  Misra UK, Pizzo SV. Upregulation of mTORC2 activation by the selective agonist of EPAC, 8-CPT-2Me-cAMP, in prostate cancer cells: assembly of a multiprotein signaling complex. J Cell Biochem, 2012, 113(5): 1488-1500.
[4].  Misra UK, Pizzo SV. Evidence for a pro-proliferative feedback loop in prostate cancer: the role of Epac1 and COX-2-dependent pathways. PLoS One, 2013, 8(4): e63150.