Toggle Nav
Close
  • Menu
  • Setting

2-NBDG

Catalog No.
B6035
fluorescent glucose analog for visualizing glucose uptake into living cells
Grouped product items
SizePriceStock Qty
5mg
$111.00
In stock
10mg
$182.00
In stock
25mg
$374.00
In stock
For scientific research use only and should not be used for diagnostic or medical purposes.

Tel: +1-832-696-8203

Email: [email protected]

Worldwide Distributors

Background

2-NBDG is a fluorescence-labeled 2-deoxy-glucose analog useful as a tracer for evaluation of cellular glucose metabolism.

Glucose is a necessary source of energy for sustaining cell activities and homeostasis in tissues. Glucose metabolism is an important target in many diseases and changed with the pathological condition, therefore, evaluation of glucose metabolism can be a significant indication in disease progressions.

2-NBDG can be used in many kinds of cells in vitro, such as HepG2 human hepatocarcinoma cells, L6 rat skeletal muscle cells, MCF-7 breast cancer epithelial cells and astrocytes, it is also used in disease models, epilepsy rat, hyperglycemia, diabetes or mouse xenograft model of cancer.

2-NBDG enters cells through glucose transporters and is subsequently phosphorylated by hexokinase and trapped inside cells. Flow cytometric detection of fluorescence produced by cells can be performed to examine 2-NBDG uptake into living cells, and the intracellular concentration of transported 2-NBDG can be measured with a fluorescence microplate assay. It can be detected with a fluorescence imaging microscopy or CCD camera simply as well.

References:
[1].  Zou C, Wang Y, Shen Z. 2-NBDG as a fluorescent indicator for direct glucose uptake measurement[J]. Journal of biochemical and biophysical methods, 2005, 64(3): 207-215.
[2].  O’Neil R G, Wu L, Mullani N. Uptake of a fluorescent deoxyglucose analog (2-NBDG) in tumor cells[J]. Molecular Imaging and Biology, 2005, 7(6): 388-392.
[3].  Tsytsarev V, Maslov K I, Yao J, et al. In vivo imaging of epileptic activity using 2-NBDG, a fluorescent deoxyglucose analog[J]. Journal of neuroscience methods, 2012, 203(1): 136-140.
[4].  Yan Chen, Junjian Zhang, Xiang-yang Zhang, 2-NBDG as a Marker for Detecting Glucose Uptake in Reactive Astrocytes Exposed to Oxygen-Glucose Deprivation In Vitro. J Mol Neurosci (2015) 55:126–130.
[5].  Vassiliy Tsytsareva,b,1,2, Konstantin I. Maslova,1,3, Junjie Yaoa,1,3, et al, In vivo imaging of epileptic activity using 2-NBDG, a fluorescent deoxyglucose analog, J Neurosci Methods. 2012 Jan 15;203(1):136-40.

Product Citation

Chemical Properties

Physical AppearanceA crystalline solid
StorageStore at -20°C
M.Wt342.26
Cas No.186689-07-6
FormulaC12H14N4O8
Solubilityinsoluble in DMSO; ≥17.1 mg/mL in H2O with ultrasonic; ≥2.93 mg/mL in EtOH with gentle warming and ultrasonic
Chemical Name(3R,4R,5S,6R)-6-(hydroxymethyl)-3-((7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)amino)tetrahydro-2H-pyran-2,4,5-triol
SDFDownload SDF
Canonical SMILESOC[C@](O1)([H])[C@](O)([H])[C@@](O)([H])[C@](NC2=CC=C(N(=O)=O)C3=NON=C23)([H])C1([H])O
Shipping ConditionSmall Molecules with Blue Ice, Modified Nucleotides with Dry Ice.
General tips We do not recommend long-term storage for the solution, please use it up soon.

Protocol

Cell experiment [1,2]:

Cell lines

HepG2 human hepatocarcinoma cells, L6 rat skeletal muscle cells, MCF-7 breast cancer epithelial cells

Preparation method

General tips for obtaining a higher concentration: Please warm the tube at 37 ℃ for 10 minutes and/or shake it in the ultrasonic bath for a while. Stock solution can be stored below -20℃ for several months.

Reacting condition

10 μM for 10 min

Applications

In HepG2 human hepatocarcinoma cells and L6 rat skeletal muscle cells, 2-NBDG concentrations higher than 0.25 mM might show a high degree of self-quenching. 2-NBDG could be used as a fluorescent indicator for direct glucose uptake measurement. In the MCF-7 breast cancer cells, 2-NBDG uptake displayed rapid uptake for the first one to five minutes, then slowed, reaching an apparent maximum uptake near 20–30 minutes.

Animal experiment [3]:

Animal models

Sprague–Dawley male adult rat

Dosage form

200 mg

Application

2-NBDG can be used for localizing epileptic foci.

Other notes

Please test the solubility of all compounds indoor, and the actual solubility may slightly differ with the theoretical value. This is caused by an experimental system error and it is normal.

References:

[1]. Zou C, Wang Y, Shen Z. 2-NBDG as a fluorescent indicator for direct glucose uptake measurement[J]. Journal of biochemical and biophysical methods, 2005, 64(3): 207-215.

[2]. O’Neil R G, Wu L, Mullani N. Uptake of a fluorescent deoxyglucose analog (2-NBDG) in tumor cells[J]. Molecular Imaging and Biology, 2005, 7(6): 388-392.

[3]. Tsytsarev V, Maslov K I, Yao J, et al. In vivo imaging of epileptic activity using 2-NBDG, a fluorescent deoxyglucose analog[J]. Journal of neuroscience methods, 2012, 203(1): 136-140.

Quality Control