Neuroscience


Neurons are the foundations of the sophisticated neural networks. Neurotransmitters such as dopamine, glutamate, and GABA, are crucial signaling molecules for the delivery of neuronal signals. Neurons synthesize/import neurotransmitters, and store them in presynaptic vesicles. A neuronal impulse is propagated by the vesicles released from presynaptic neurons.
Neurotransmitter receptors function via various G-protein coupled and G-protein independent mechanisms that activate downstream intracellular signaling pathways such as cAMP/PKA, PI3K/AKT, phospholipase A2, and phospholipase C pathways. For instance, dopamine receptors act through adenylate cyclase to activate PKA and other signaling molecules, thereby mediate gene expression through the actions of CREB and other transcription factors. Other neurotransmitters such as NMDAR or AMPAR are associated with ion channels that control flux of Ca2+ and Na+, thus propagating the action potential across the post-synaptic neuron.
Dysfunctions in GABAergic/glutamatergic/serotonergic/dopaminergic pathways result in a broad range of neurological disorders such as chronic pain, neurodegenerative diseases, and insomnia, as well as mental disorders including schizophrenia, bipolar disorder, depression, and addiction.
-
C4194 NQTrpSummary: inhibitor of Alzheimer’s disease-associated amyloid β (Aβ) oligomerization and fibrillization -
B1512 PregnenoloneSummary: steroid hormone -
B1556 Chlorpheniramine MaleateSummary: Histamine H1 receptor antagonist -
B1445 Flunixin MegluminTarget: COXSummary: potent cyclooxygenase inhibitor -
B6582 Pirenzepine dihydrochlorideSummary: M1 muscarinic receptor selective antagonist -
B6543 Chlorisondamine diiodideSummary: long lasting nicotinic antagonist -
A3778 RS 127445Summary: 5-HT2B receptor antagonist,high affinity -
B5574 VU 0360223Summary: negative allosteric modulator of mGlu5 -
A1045 Gap 279 CitationTarget: Gap JunctionsSummary: Selective gap junction blocker -
C3723 FPS-ZM1Summary: RAGE Inhibitor

