

Product Information

Aconitase Activity Colorimetric Assay Kit

I. Kit Contents:

Components	K2226-100	Cap Color	Part Number
	100 assays		
Assay Buffer	30 ml	WM	K2226-C-1
Substrate (lyophilized)	1 vial	Blue	K2226-C-2
Developer (lyophilized)	1 vial	Purple	K2226-C-3
Enzyme Mix	200 μl	Green	K2226-C-4
Cysteine-HCl (lyophilized)	1 vial	Red	K2226-C-5
(NH ₄)Fe(SO ₄) ₂ (lyophilized)	1 vial	Brown	K2226-C-6
Isocitrate Standard (100 mM)	100 μ1	Yellow	K2226-C-7

II. Introduction:

Aconitase (aconitate hydratase) is an iron-sulfur protein that catalyzes the stereo-specific isomerization of citrate to isocitrate via cis-aconitate in the TCA cycle. The active aconitase has an $[Fe_4S_4]^{2+}$ cluster. There is two aconitases: a cytosolic (c-) aconitase and a mitochondrial (m-), which are related but distinctly different enzymes and are coded on different chromosomes. Cells or other biological samples treated with pro-oxidants can cause loss of aconitase activity, which can be used to measure oxidative damage.

The Aconitase Activity Colorimetric Assay Kit provides a highly sensitive, simple, fast and convenient way for detection of aconitase activity in various samples based on colorimetric method. In the assay, aconitase converts citrate into isocitrate, which is further processed generating a product that converts a nearly colorless probe into an intensely colored product (λ max = 450nm). The kit is suitable for high throughput screening.

III. Storage and Handling:

Store the kit at 4ÅE. protected from light. Warm the assay buffer to room temperature before use. Briefly centrifuge vials before opening. Read the entire protocol before performing the assay.

IV. Reagent Reconstitution and General Consideration:

Substrate: Dissolve with 220 µl ddH₂O; sufficient for 100 assays. Store at 4ÅEO

Developer: Dissolve with 1.1 ml Assay Buffer before use; sufficient for 100 assays. Store at 4ÅE0

Aconitase Activation Solution: Dissolve cysteine-HCl and $(NH_4)_2Fe(SO_4)_2$ with 0.5 ml Assay Buffer separately, and store at -20ÅECUse within one month. Take out 0.1 ml cysteine-HCl and $(NH_4)_2Fe(SO_4)_2$ solutions and mix together to prepare fresh activation solution.

Ensure that the Assay Buffer is at room temperature before use. Keep samples, Enzyme Mix and Aconitase solution on ice during the assay.

V. Aconitase Activity Assay:

1. Sample Preparations:

Homogenize 20 - 40 mg tissue or 10⁶ Cells on ice in 0.1 ml cold Assay Buffer; Centrifuge at 800 xg for 10 min at 4°C; Collect the supernatant for caconitase assay. For m-aconitase assay, centrifuge the supernatant at 20,000 x g for 15 min at 4ÅE and collect the pellet, dissolve into 0.1 ml cold Assay Buffer, sonicate for 20 sec. Keep samples at -80ÅE for storage.

Add 10 µl activation solutions to 100 µl sample; incubate on ice for 1 hr to activate aconitase in the sample.

Add 2 - 50 μ l activated samples into each well, and adjust volume to 50 μ l. We suggest using a background control group as well as several doses of your sample to ensure the readings are within the linear range.

2. Isocitrate Standard Curve:

Dilute 10 μl with 490 μl assay buffer to prepare 2 mM isocitrate standard solution. Add 0, 2, 4, 6, 8, 10μl 2 mM Isocitrate Standard solution into 96-well plate in duplicate to generate 0, 4, 8, 12, 16, 20 nmol/well Isocitrate standard. Bring the final volume to 50 μl with Assay Buffer

3. Reaction Mix: Mix enough reagents for the number of assays to be performed. For each well, prepare a total 50 µl Reaction Mix:

	Sample Reaction	Mix Background Mix
Assay Buffer	46 μ1	48 μl
Enzyme Mix	2 μl	2 μl
Substrate	2 μ1	

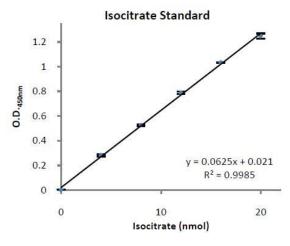
Add 50 μl of the Sample Reaction Mix to each test samples, background control and Isocitrate standards. Mix well and incubate at 25°C for 30-60 min. Add 10μl Developer to each well, mix and incubate at 25°C for 10 min. Measure OD 450nm.

4. Calculation: Plot the Isocitrate standard curve. $\triangle OD = OD_{sample} - OD_{background}$, apply the $\triangle OD$ to the Isocitrate standard curve to get B nmol of isocitrate generated by aconitase in 30 - 60 min.

Aconitase Activity = B/ (T X V) x Sample Dilution Factor = nmol/min/ml = mU/ml

Where: B is the isocitrate amount from Standard Curve (in nmol).


T is the time incubated (in min).


V is the pretreated sample volume added into the reaction well (in ml).

Unit definition: One unit of Aconitase is the amount of enzyme that will isomerize 1.0 µmol of Citrate to Isocitrate per min at pH 7.4 at 25°C.

III. Reagent Reconstitution and General Consideration:

Store kit at -20°C Warm the assay buffer to room temperature before use. Briefly centrifuge vials before opening. Read the entire protocol before performing the assay. Keep samples and amylase positive control on ice during the assay. Amylase Positive Control: Dissolve into 50 µl Assay Buffer, and store at -20°C.

General Troubleshooting Guide:

Problems	Cause	Solution
Assay not working	• Use of a different buffer	Assay buffer must be at room temperature
	• Omission of a step in the protocol	Refer and follow the data sheet precisely
	• Plate read at incorrect wavelength	Check the wavelength in the data sheet and the filter settings

	Use of a different 96-well plate	of the instrument
		• Fluorescence: Black plates ; Luminescence: White plates;
		Colorimeters: Clear plates
Samples with	• Use of an incompatible sample type	Refer data sheet for details about incompatible samples
erratic readings	Samples prepared in a different buffer	• Use the assay buffer provided in the kit or refer data sheet
	Cell/ tissue samples were not completely homogenized	for instructions
	Samples used after multiple free-thaw cycles	• Use Dounce homogenizer (increase the number of strokes);
	Presence of interfering substance in the sample	observe for lysis under microscope
	Use of old or inappropriately stored samples	Aliquot and freeze samples if needed to use multiple times
	l	• Troubleshoot if needed, deproteinize samples
		• Use fresh samples or store at correct temperatures till use
Lower/ Higher	Improperly thawed components	• Thaw all components completely and mix gently before use
readings in	Use of expired kit or improperly stored reagents	Always check the expiry date and store the components
Samples	Allowing the reagents to sit for extended times on ice	appropriately
and Standards	Incorrect incubation times or temperatures	Always thaw and prepare fresh reaction mix before use
	Incorrect volumes used	Refer data sheet & verify correct incubation times and
	l	temperatures
		Use calibrated pipettes and aliquot correctly
Readings do not	Use of partially thawed components	Thaw and resuspend all components before preparing the
follow a linear	Pipetting errors in the standard	reaction mix
pattern for	Pipetting errors in the reaction mix	Avoid pipetting small volumes
Standard curve	Air bubbles formed in well	Prepare a master reaction mix whenever possible
	Standard stock is at an incorrect concentration	• Pipette gently against the wall of the tubes
	Calculation errors	Always refer the dilutions in the data sheet
	Substituting reagents from older kits/ lots	Recheck calculations after referring the data sheet
		• Use fresh components from the same kit
Unanticipated	Measured at incorrect wavelength	Check the equipment and the filter setting
results	Samples contain interfering substances	• Troubleshoot if it interferes with the kit
	Use of incompatible sample type	• Refer data sheet to check if sample is compatible with the ki
	Sample readings above/below the linear range	or optimization is needed
		• Concentrate/ Dilute sample so as to be in the linear range
Note: The most prob	pable list of causes is under each problem section. Causes/ Solut	ions may overlap with other problems.

For research use only! Not to be used in humans.

Our promise

If the product does not perform as described on this datasheet, we will offer a refund or replacement. For more details, please visit http://www.apexbt.com/ or contact our technical team.

Tel: +1-(832)696-8203 Fax: +1-832-641-3177 Email: sales@apexbt.com