

Product Information

Caspase Colorimetric Substrate Set

I. Kit Contents:

Description	Concentration	7 x 25 assays	Part Number
Caspase-1 Substrate, Ac-YVAD-pNA	4 mM	125 μ1	K2203-C-1
Caspase-2 Substrate, Ac-VDVAD-pNA	4 mM	125 μ1	K2203-C-2
Caspase-3 Substrate, Ac-DEVD-pNA	4 mM	125 μ1	K2203-C-3
Caspase-5 Substrate, Ac-WEHD-pNA	4 mM	125 μ1	K2203-C-4
Caspase-6 Substrate, Ac-VEID-pNA	4 mM	125 μ1	K2203-C-5
Caspase-8 Substrate, Ac-IETD-pNA	4 mM	125 μ1	K2203-C-6
Caspase-9 Substrate, Ac-LEHD-pNA	4 mM	125 μl	K2203-C-7

II. Introduction:

Caspases (Cysteine-dependent aspartate-directed proteases) are a family of cysteine proteases that play important roles in apoptosis, inflammation and necrosis. Sequential activation of caspases plays a critical role in cell apoptosis. Caspase-1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 are members of caspases family. Caspase-1, 4 and 5 are involved in T-cell maturation. Caspase-2, 8, 9 and 10 are initiator caspases that cleave inactive pro-forms of effector caspases into active caspases. Caspase-3, 6 and 7 are effector caspases that cleave other protein substrates within the cell to trigger the apoptotic process.

Caspase Colorimetric Substrate Set is ready-to-use for members of caspase family proteases. All substrates were provided in liquid ready-to-use form.

III. Assay Procedure:

- 1. Induce apoptosis in cells by desired method. Concurrently incubate a control culture without induction.
- 2. Count cells and pellet $1 5 \times 10^6$ cells.
- 3. Resuspend cells in 50 μ l of chilled Cell Lysis Buffer and incubate cells on ice for 10 minutes.
- 4. Centrifuge for 1 min in a microcentrifuge (10,000 x g).
- 5. Transfer supernatant to a fresh tube and assay protein Concentration.
- 6. Dilute 50 200 µg protein to 50 µl Cell Lysis Buffer for each assay.
- 7. Add 50 µl of 2X Reaction Buffer containing 10 mM DTT to each sample.
- 8. Add 5 μl of the 4 mM pNA conjugated substrates (200 μM final conc.) into each tube individually and incubate at 37 °C for 1-2 hour.
- 9. Read samples at 400 or 405 nm in a microtiter plate reader, or spectrophotometer using a 100-µl micro quartz cuvette, or dilute sample to 1 ml with Dilution Buffer and using regular cuvette (note: Dilution of the samples proportionally decreases the reading).

Fold-increase in caspase activity can be determined by comparing these results with the level of the uninduced control.

Note: Background reading from cell lysates and buffers should be subtracted from the readings of both induced and the uninduced samples before calculating fold increase in caspase activity.

General Troubleshooting Guide for Caspase Colorimetric and Fluorometric Kits:

Problems	Cause	Solution
Assay not working	Cells did not lyse completely	• Resuspend the cell pellet in the lysis buffer and incubate as

	• Experiment was not performed at optimal time after	described in the datasheet
	apoptosis induction	Perform a time-course induction experiment for apoptosis
	• Plate read at incorrect wavelength	Check the wavelength listed in the datasheet and the filter
	• Old DTT used	settings of the instrument
		Always use freshly thawed DTT in the cell lysis buffer
High Background	• Increased amount of cell lysate used	• Refer to datasheet and use the suggested cell number to
	• Increased amounts of components added due to incorrect	prepare lysates
	pipetting	Use calibrated pipettes
	• Incubation of cell samples for extended periods	Refer to datasheet and incubate for exact times
	• Use of expired kit or improperly stored reagents	Always check the expiry date and store the individual
	Contaminated cells	components appropriately
		Check for bacteria/ yeast/ mycoplasma contamination
Lower signal	Cells did not initiate apoptosis	• Determine the time-point for initiation of apoptosis after
levels	• Very few cells used for analysis	induction (time-course experiment)
	• Use of samples stored for a long time	Refer to datasheet for appropriate cell number
	• Incorrect setting of the equipment used to read samples	• Use fresh samples or aliquot and store and use within one
	• Allowing the reagents to sit for extended times on ice	month for the assay
		Refer to datasheet and use the recommended filter setting
		Always thaw and prepare fresh reaction mix before use
Samples with	• Uneven number of cells seeded in the wells	Seed only equal number of healthy cells (correct passage
erratic readings	• Samples prepared in a different buffer	number)
	• Adherent cells dislodged and lost at the time of experiment	Use the cell lysis buffer provided in the kit
	• Cell/ tissue samples were not completely homogenized	• Perform experiment gently and in duplicates/triplicates;
	• Samples used after multiple freeze-thaw cycles	apoptotic cells may become floaters
	• Presence of interfering substance in the sample	• Use Dounce homogenizer (increase the number of strokes);
	• Use of old or inappropriately stored samples	observe efficiency of lysis under microscope
		Aliquot and freeze samples, if needed to use multiple times
		Troubleshoot as needed
		Use fresh samples or store at correct temperatures until use
Unanticipated	Measured at incorrect wavelength	Check the equipment and the filter setting
results	• Cell samples contain interfering substances	• Troubleshoot if it interferes with the kit (run proper
		controls)
General issues	• Improperly thawed components	• Thaw all components completely and mix gently before use
	• Incorrect incubation times or temperatures	• Refer to datasheet & verify the correct incubation times and
	• Incorrect volumes used	temperatures
	• Air bubbles formed in the well/tube	Use calibrated pipettes and aliquot correctly
	• Substituting reagents from older kits/ lots	Pipette gently against the wall of the well/tubes
	• Use of a different 96-well plate	Use fresh components from the same kit
		• Fluorescence: Black plates; Absorbance: Clear plates
Note# The most prob	pable cause is listed under each section. Causes may overlap with	other sections.

For research use only! Not to be used in humans.

Our promise

If the product does not perform as described on this datasheet, we will offer a refund or replacement. For more details, please visit http://www.apexbt.com/ or contact our technical team.

Tel: +1-(832)696-8203 Fax: +1-832-641-3177 Email: sales@apexbt.com