

Product Information

Caspase-9 Fluorometric Assay Kit

I. Kit Contents:

Component	K2018-25	K2018-100	K2018-200	K2018-400	Part Number
	25 assays	100 assays	200 assays	400 assays	
Cell Lysis Buffer	25 ml	100 ml	100 ml	100 ml	K2018-C-1
2X Reaction Buffer	2 ml	4 x 2 ml	16 ml	32 ml	K2018-C-2
LEHD-AFC (1 mM)	125 μl	500 μl	2 x 0.5 ml	2 x 1 ml	K2018-C-3
DTT (1 M)	100 μ1	400 μ1	400 μl	400 μ1	K2018-C-4

II. Introduction:

Cysteine-dependent aspartate-directed proteases (Caspases) are a family of cysteine proteases that play important roles in apoptosis, necrosis, and inflammation. Sequential activation of caspases plays an important role in cell apoptosis. Caspase-9 is a member of the caspase family. Caspase-9, as well as caspase-2, -8 and -10, is an initiator caspase. Caspase-9 is involved in the mitochondrial death pathway and is activated during apoptosis. The activation of JNK/SAPK stress signaling pathways induces the release of cytochrome c from mitochondria and activation of apaf-1, which then cleaves caspase-9 into the active form. The active Caspase-9 cleaves and activates Caspase-3 and Caspase-7, which then cleave poly ADP ribose polymerase.

Caspase-9 Fluorometric Assay Kit provides a convenient and simple way for detecting the LEHD-dependent caspase activity. LEHD-AFC (AFC: 7-amino-4-trifluoromethyl coumarin) emits blue light (λ max = 400 nm); while cleavage of the substrate LEHD-AFC by Caspase-9 or related caspases, free AFC emits a yellow-green fluorescence (λ max = 505 nm), which can be quantified by using a fluorescence microtiter plate reader or a fluorometer. Comparison of the fluorescence of free AFC from an apoptotic sample with an uninduced control determines the fold increase in Caspase-9 activity.

III. Caspase-9 Assay Protocol:

A. General Considerations

Aliquot enough 2X Reaction Buffer for the number of assays to be performed. Add DTT to the 2X Reaction Buffer immediately before use (10 mM final concentration: add 10 µl of 1.0 M DTT stock per 1 ml of 2X Reaction Buffer).

Protect LEHD-AFC from light.

B. Assay Procedure

- 1. Induce apoptosis in cells by desired method. Concurrently incubate a control culture without induction.
- 2. Count cells and pellet 1 5 x 10⁶ cells or use 50-200 μg cell lysates if protein concentration has been measured.
- 3. Resuspend cells in 50 µl of chilled Cell Lysis Buffer. Incubate cells on ice for 10 minutes.
- 4. Add 50 μ l of 2X Reaction Buffer (containing 10 mM DTT) to each sample. Add 5 μ l of the 1 mM LEHD-AFC substrate (50 μ M final concentration) and incubate at 37 $^{\circ}$ C for 1-2 hour.
- 5. Read samples in a fluorometer equipped with a 400 nm excitation filter and 505 nm emission filter. For a plate-reading set-up, transfer the samples to a 96-well plate.

You may also perform the entire assay directly in a 96-well plate.

Fold-increase in Caspase-9 activity can be determined by comparing these results with the level of the uninduced control.

IV. Storage and Stability:

Store kit at -20° C (Store Cell Lysis Buffer and 2X Reaction Buffer at 4° C after opening). All reagents are stable for 1 year under proper storage conditions.

General Troubleshooting Guide for Caspase Colorimetric and Fluorometric Kits:

Problems	Cause	Solution	
Assay not working	Cells did not lyse completely	• Resuspend the cell pellet in the lysis buffer and incubate as	
	• Experiment was not performed at optimal time after	described in the datasheet	
	apoptosis induction	Perform a time-course induction experiment for apoptosis	
	• Plate read at incorrect wavelength	• Check the wavelength listed in the datasheet and the filter	
	• Old DTT used	settings of the instrument	
		Always use freshly thawed DTT in the cell lysis buffer	
High Background	• Increased amount of cell lysate used	• Refer to datasheet and use the suggested cell number to	
	• Increased amounts of components added due to incorrect	prepare lysates	
	pipetting	Use calibrated pipettes	
	• Incubation of cell samples for extended periods	Refer to datasheet and incubate for exact times	
	• Use of expired kit or improperly stored reagents	Always check the expiry date and store the individual	
	Contaminated cells	components appropriately	
		Check for bacteria/ yeast/ mycoplasma contamination	
Lower signal	Cells did not initiate apoptosis	• Determine the time-point for initiation of apoptosis after	
levels	• Very few cells used for analysis	induction (time-course experiment)	
	• Use of samples stored for a long time	Refer to datasheet for appropriate cell number	
	• Incorrect setting of the equipment used to read samples	• Use fresh samples or aliquot and store and use within one	
	• Allowing the reagents to sit for extended times on ice	month for the assay	
		Refer to datasheet and use the recommended filter setting	
		Always thaw and prepare fresh reaction mix before use	
Samples with	• Uneven number of cells seeded in the wells	Seed only equal number of healthy cells (correct passage)	
erratic readings	• Samples prepared in a different buffer	number)	
	• Adherent cells dislodged and lost at the time of experiment	Use the cell lysis buffer provided in the kit	
	• Cell/ tissue samples were not completely homogenized	Perform experiment gently and in duplicates/triplicates;	
	• Samples used after multiple freeze-thaw cycles	apoptotic cells may become floaters	
	• Presence of interfering substance in the sample	• Use Dounce homogenizer (increase the number of strokes);	
	• Use of old or inappropriately stored samples	observe efficiency of lysis under microscope	
		Aliquot and freeze samples, if needed to use multiple times	
		Troubleshoot as needed	
		Use fresh samples or store at correct temperatures until use	
Unanticipated	Measured at incorrect wavelength	Check the equipment and the filter setting	
results	• Cell samples contain interfering substances	Troubleshoot if it interferes with the kit (run proper	
		controls)	
General issues	• Improperly thawed components	• Thaw all components completely and mix gently before use	

	Incorrect incubation times or temperatures	• Refer to datasheet & verify the correct incubation times and			
	• Incorrect volumes used	temperatures			
	• Air bubbles formed in the well/tube	• Use calibrated pipettes and aliquot correctly			
	Substituting reagents from older kits/ lots	• Pipette gently against the wall of the well/tubes			
	• Use of a different 96-well plate	• Use fresh components from the same kit			
		• Fluorescence: Black plates; Absorbance: Clear plates			
Note# The most proba	Note# The most probable cause is listed under each section. Causes may overlap with other sections				

For research use only! Not to be used in humans.

Our promise

If the product does not perform as described on this datasheet, we will offer a refund or replacement. For more details, please visit http://www.apexbt.com/ or contact our technical team.

Tel: +1-(832)696-8203 Fax: +1-832-641-3177 Email: sales@apexbt.com