

Product Name: Angeloylgomisin H Revision Date: 08/14/2025

Product Data Sheet

AngeloyIgomisin H

Cat. No.: C8647

CAS No.: 66056-22-2 Formula: C28H36O8

M.Wt: 500.59

Synonyms:

Target: PPAR- γ

Pathway: DNA Damage

Storage: Store at -20° C away from moisture and light

for 3 years

Solvent & Solubility

Soluble in DMSO

In Vitro

Preparing Stock Solutions	Mass Solvent Concentration	1mg	5mg	10mg
	1 mM	1.9976 mL	9.9882 mL	19.9764 mL
	5 mM	0.3995 mL	1.9976 mL	3.9953 mL
	10 mM	0.1998 mL	0.9988 mL	1.9976 mL

Please refer to the solubility information to select the appropriate solvent.

Biological Activity

Shortsummary

Angeloylgomisin H (CAS No. 66056-22-2) is a natural lignan compound derived from Schisandra rubriflora. It has been shown to activate peroxisome proliferator-activated receptor gamma (PPAR- γ), thereby improving insulin-stimulated glucose uptake. This suggests its potential value in antidiabetic research and metabolic regulation.

IC₅₀ & Target

Cell Viability Assay

In Vitro

Cell Line:	AGS, HeLa, and HT-29
Preparation method:	Cells were seeded at a thickness of 1 $ imes$ 10 3 cells/well in a 96-well plate and
	refined with sans serum DMEM or RPMI-1640 for 16 h. At that point, the cells

		were treated with sequential groupings of Angeloyl gomisin H in different			
		concentration (10, 25, 50 µg/mL) for 24 h.			
	Reacting conditions:	10, 25, 50 µg/mL, 24 h			
	Applications:	The MTT assay showed that angeloyl gomisin H concentration-dependently			
	a United with	suppressed the proliferation and viability against three cancer cells. AGS			
	Lot Expore ma	(22.01 \pm 1.87 $$ μ M), HeLa (32.68 \pm 2.21 $$ μ M), and HT29 (156.04 \pm 6.71 $$ μ			
	Charle Fortect	M) cells.			
In Vivo	Animal experiment				
	Animal models:	Male Sprague - Dawley rats			
	Dosage form:	The daily FS-60 intake was 200 mg/kg. Angeloylgomisin H should be 200 mg			
		imes (0.6 mg/g) = 0.12 mg (based on the mean content of 0.6 mg/g FS-60).			
	Applications:	Angeloylgomisin H, as a component of FS-60 (0.6 \pm 0.1 mg/g FS-60)			
		administered orally at 200 mg/kg bw daily for 8 weeks to 90%			
	Research to the United Brit	pancreatectomized type 2 diabetic rats, contributed to FS-60's effects of			
		reducing fasted serum glucose, improving glucose tolerance, enhancing			
		insulin sensitivity (via increased glucose infusion rate and suppressed hepatic			
	Kellere v	glucose output), and potentiating first-phase insulin secretion.			
	Preparation method:	Angeloylgomisin H was identified as one of the key lignan components in			
		FS-60 — a lignan-rich fraction of Fructus Schisandrae prepared via 70%			
		ethanol extraction and XAD column fractionation (eluted with 60% methanol).			
		In animal experiments, FS-60 (containing 0.6 \pm 0.1 mg/g Angeloylgomisin H,			
		along with schizandrin and gomisin A) was administered to 90%			
		pancreatectomized (Px) type 2 diabetic rats. The rats were orally given 200			
		mg/kg body weight (bw) of FS-60 daily for 8 weeks.			
	Other notes:	The technical data provided above is for reference only.			

Product Citations

See more customer validations on www.apexbt.com.

References

- 1. Choi, SK., Lee, YG., Wang, R.B. et al. Dibenzocyclooctadiene lignans from the fruits of Schisandra chinensis and their cytotoxicity on human cancer cell lines. Appl Biol Chem 63, 39 (2020). https://doi.org/10.1186/s13765-020-00524-y.
- 2. Kwon DY, Kim DS, Yang HJ, Park S. The lignan-rich fractions of Fructus Schisandrae improve insulin sensitivity via the PPAR- γ pathways in in vitro and in vivo studies. J Ethnopharmacol. 2011 May 17;135(2):455-62. doi: 10.1016/j.jep.2011.03.037. Epub 2011 Apr 2. PMID: 21440615.

Caution

FOR RESEARCH PURPOSES ONLY.

NOT FOR HUMAN, VETERINARY DIAGNOSTIC OR THERAPEUTIC USE.

Specific storage and handling information for each product is indicated on the product datasheet. Most APExBIO products are stable under the recommended conditions. Products are sometimes shipped at a temperature that differs from the recommended storage temperature. Shortterm storage of many products are stable in the short-term at temperatures that differ from that required for long-term storage. We ensure that the product is shipped under conditions that will maintain the quality of the reagents. Upon receipt of the product, follow the storage recommendations on the product data sheet.

APExBIO Technology

www.apexbt.com

7505 Fannin street, Suite 410, Houston, TX 77054.

Tel: +1-832-696-8203 | Fax: +1-832-641-3177 | Email: info@apexbt.com

Applicate destation topological and the conference of the conferen

Action to particular Expose the University

AR Estado de decidado Estado Indicado de Contracto de Con

A Report Political Lander of a Inform