Product Data Sheet

Chemical Properties

Product Name: (S)-Crizotinib

Cas No.: 877399-52-5;1374356-45-2

M.Wt: 450.34

Formula: C21H22Cl2FN5O

Synonyms: N/A

Chemical Name: 3-[(1S)-1-(2,6-dichloro-3-fluorophenyl)ethoxy]-5-(1-piperidin-4-ylpyrazol-4-yl)pyridin-2-amine

Canonical SMILES: CC(C1=C(C=CC(C1Cl)F)Cl)OC2=C(N=CC(=C2)C3=CN(N=C3)C4CCNCC4)N

Solubility: ≥33.3mg/mL in DMSO

Storage: Store at -20°C

General tips: For obtaining a higher solubility, please warm the tube at 37°C and shake it in the ultrasonic bath for a while. Stock solution can be stored below -20°C for several months.

Shopping Condition: Evaluation sample solution: ship with blue ice
All other available size: ship with RT, or blue ice upon request

Biological Activity

Targets: DNA Damage/DNA Repair

Pathways: MTH1

Description:
(S)-crizotinib the selectively inhibited MTH1 catalytic activity with IC50 of 72 nM, while clinically used (R)-enantiomer of the drug was inactive with IC50 of 1375 nM. Furthermore, direct-binding assays (ITC) indicated a 16-fold higher affinity of the (S)-enantiomer towards MTH1 compared with (R)-enantiomer. By using Km concentrations of substrates, the average IC50 values for (S)-crizotinib and the MTH1 substrates 8-oxo-dGTP and 2-OH-dATP were 330 nM and 408 nM.
respectively. (S)-crizotinib efficiently inhibited colony formation of SW480 cells and KRAS-mutated PANC1 cells, similar to SCH51344. In addition, in vitro Kd measurements indicated that (S)-crizotinib was considerably less potent than the (R)-enantiomer against the established targets ALK, MET and ROS1. (S)-crizotinib did not lead to the detection of any significant effects on proliferation in SW480 cells and showed highest toxicity towards the SV40T and KRASV12 cells. (S)-crizotinib, in contrast to (R)-crizotinib, efficiently stabilized MTH1 validating the differential targeting within BJ-KRASV12 cells using a cellular thermal shift assay. (S)-crizotinib induced an increase in DNA single-strand breaks, activated DNA repair in human colon carcinoma cells, and effectively suppressed tumour growth in animal models as a result of disruption of nucleotide pool homeostasis via MTH1 inhibition.

In vivo mouse xenograft studies showed (S)-crizotinib, but not the (R)-enantiomer, was able to impair overall tumour progression as well as specifically reduce tumour volume by more than 50%.

Reference:
1. Huber KVM, Salah E, Radic B, et al. Stereospecific targeting of MTH1 by (S)-crizotinib as an anticancer strategy. NATURE, 2014;508:222-227

Protocol

Cell experiment:

Cell lines BJ, H1437, H2122, H23, H358, H460, HCT116 and U2OS cells

Preparation method The solubility of this compound in DMSO is >10 mM. General tips for obtaining a higher concentration: Please warm the tube at 37 °C for 10 minutes and/or shake it in the ultrasonic bath for a while. Stock solution can be stored below -20°C for several months.

Reacting conditions BJ, SV40T, RASV12-cells (5 μM, 3h); U2OS cells (5 μM, 24h)

Applications (S)-crizotinib the selectively inhibited MTH1 catalytic activity with IC50 of 72 nM, while clinically used (R)-enantiomer of the drug was inactive with IC50 of 1375 nM. Furthermore, direct-binding assays (ITC) indicated a 16-fold higher affinity of the (S)-enantiomer towards MTH1 compared with (R)-enantiomer. By using Km concentrations of substrates, the average IC50 values for (S)-crizotinib and the MTH1 substrates 8-oxo-dGTP and 2-OH-dATP were 330 nM and 408 nM respectively. (S)-crizotinib efficiently inhibited colony formation of SW480 cells and KRAS-mutated PANC1 cells, similar to SCH51344. In addition, in vitro Kd measurements indicated that (S)-crizotinib was considerably less potent than the (R)-enantiomer against the established targets ALK, MET and ROS1. (S)-crizotinib did not lead to the detection of any significant effects on proliferation in SW480 cells and showed highest toxicity towards the SV40T and KRASV12 cells. (S)-crizotinib, in contrast to (R)-crizotinib, efficiently stabilized MTH1 validating the differential
targeting within BJ-KRASV12 cells using a cellular thermal shift assay. (S)-crizotinib induced an increase in DNA single-strand breaks, activated DNA repair in human colon carcinoma cells, and effectively suppressed tumour growth in animal models as a result of disruption of nucleotide pool homeostasis via MTH1 inhibition.

Animal experiment [3]:

Animal models	SCID mice (female, 5–6 weeks)
Dosage form | 25 mg per kg, subcutaneously daily; 50 mg per kg, orally, daily
Applications | In vivo mouse xenograft studies showed (S)-crizotinib, but not the (R)-enantiomer, was able to impair overall tumour progression as well as specifically reduce tumour volume by more than 50%.
Other notes | Please test the solubility of all compounds indoor, and the actual solubility may slightly differ with the theoretical value. This is caused by an experimental system error and it is normal.

Reference:
1. Huber KVM, Salah E, Radic B, et al. Stereospecific targeting of MTH1 by (S)-crizotinib as an anticancer strategy. NATURE, 2014;508:222-227

Product Citations

Caution

FOR RESEARCH PURPOSES ONLY.
Specific storage and handling information for each product is indicated on the product datasheet. Most ApexBio products are stable under the recommended conditions. Products are sometimes shipped at a temperature that differs from the recommended storage temperature. Short-term storage of many products are stable in the short-term at temperatures that differ from that required for long-term storage. We ensure that the product is shipped under conditions that will maintain the quality of the reagents. Upon receipt of the product, follow the storage recommendations on the product data sheet.