

Product Name: WEHI-539 Revision Date: 10/10/2021

Product Data Sheet

WEHI-539

Cat. No.: A3935

CAS No.: 1431866-33-9
Formula: C31H29N5O3S2

M.Wt: 583.72

Synonyms: WEHI539,WEHI 539

Target: Apoptosis

Pathway: Bcl-xL

Storage: Store at -20°C

HN, N S OH NH₂

Solvent & Solubility

insoluble in DMSO; insoluble in H2O; insoluble in EtOH

In Vitro

Preparing Stock Solutions	Mass			
	Solvent	1mg	5mg	10mg
	Concentration			
	1 mM	1.7132 mL	8.5658 mL	17.1315 mL
	5 mM	0.3426 mL	1.7132 mL	3.4263 mL
	10 mM	0.1713 mL	0.8 <mark>5</mark> 66 mL	1.7132 mL

Please refer to the solubility information to select the appropriate solvent.

Biological Activity

Shortsummary	Bcl-xL inhibitor,potent and selective		
IC ₅₀ & Target	1.1 nM (BCL-XL)		
	Cell Viability Assay		
	Cell Line:	Human colon cancer cell	
	Reacting conditions:	1 μM, 24h	
In Vitro	Applications:	Limiting dilution analysis with CSCs that were pre-treated with ABT-737,	
		ABT-199 or WEHI-539 revealed that ABT-737 and WEHI-539 both were	
		sufficient to decrease clonogenic capacity, whereas ABT-199 did not affect	
		clonogenic growth. As WEHI-539 is selective for BCLXL, this points to a	

		dependency of CSCs on BCLXL for survival. Importantly, ABT-737- or	
		WEHI-539-induced loss of clonogenicity could be restored when BCLXL was	
		ectopically overexpressed. When spheroid cultures were treated with ABT-737	
		or WEHI-539 compounds, CSCs were effectively sensitized toward oxaliplatin	
	B Lineage	and other chemotherapeutic agents.	
In Vivo	Animal experiment		
	Applications:	A THE PROPERTY OF THE PROPERTY	

Product Citations

- 1. Yasmeen A. Albalawi, Srinivas D. Narasipura, et al. "Wnt/β-Catenin Protects Lymphocytes from HIV-Mediated Apoptosis via Induction of Bcl-xL." Viruses. 2022 Jul 2;14(7):1469. PMID: 35891449
- 2. Kirsteen J. Campbell, Susan M. Mason, et al. "Breast cancer dependence on MCL-1 is due to its canonical anti-apoptotic function." Cell Death Differ. 2021 Sep;28(9):2589-2600. PMID: 33785871
- 3. Sanne Venneker, Alwine B. Kruisselbrink, et al. "Beyond the influence of idh mutations: Exploring epigenetic vulnerabilities in chondrosarcoma." Cancers (Basel). 2020 Nov 30;12(12):E3589. PMID: 33266275
- 4. Enyuan Shang, Trang T. T. Nguyen, et al. "Epigenetic Targeting of McI-1 Is Synthetically Lethal with BcI-xL/BcI-2 Inhibition in Model Systems of Glioblastoma." Cancers 2020, 12(8), 2137;1 August 2020. PMID: 32752193
- 5. Meyer L, Verbist KC, et al. "JAK/STAT pathway inhibition sensitizes CD8 T cells to dexamethasone-induced apoptosis in hyperinflammation." Blood. 2020;blood.2020006075. PMID: 32530039

See more customer validations on www.apexbt.com.

References

1. Colak S, Zimberlin CD, Fessler E et al. Decreased mitochondrial priming determines chemoresistance of colon cancer stem cells. Cell Death Differ. 2014 Jul;21(7):1170-7.

Caution

FOR RESEARCH PURPOSES ONLY.

NOT FOR HUMAN, VETERINARY DIAGNOSTIC OR THERAPEUTIC USE.

Specific storage and handling information for each product is indicated on the product datasheet. Most APExBIO products are stable under the recommended conditions. Products are sometimes shipped at a temperature that differs from the recommended storage temperature. Shortterm storage of many products are stable in the short-term at temperatures that differ from that required for long-term storage. We ensure that the product is shipped under conditions that will maintain the quality of the reagents. Upon receipt of the product, follow the storage recommendations on the product data sheet.

APExBIO Technology

www.apexbt.com

7505 Fannin street, Suite 410, Houston, TX 77054. Tel: +1-832-696-8203 | Fax: +1-832-641-3177 | Email: info@apexbt.com

APENER BIO