

Product Information

Caspase-4 Colorimetric Assay Kit

I. Kit Contents:

Component	K2199-25	K2199-100	K2199-200	K2199-400	Part Number
	25 assays	100 assays	200 assays	400 assays	
Cell Lysis Buffer	25 ml	100 ml	100 ml	100 ml	K2199-C-1
2X Reaction Buffer	2 ml	4 x 2 ml	16 ml	32 ml	K2199-C-2
LEHD-pNA (4 mM)	125 µl	500 µl	2 x 0.5 ml	2 x 1 ml	K2199-C-3
DTT (1 M)	100 µl	400 µl	400 µl	400 µl	K2199-C-4
Dilution Buffer	25 ml	100 ml	200 ml	400 ml	K2199-C-5

II. Introduction:

Caspase-4 belongs to the caspase-family of cysteine proteases. Caspase-4 is an enzyme that proteolytically cleaves other proteins at an aspartic acid residue. Caspase-4 exists in cells as an inactive proenzyme. It is matured by proteolysis. The active Caspase-4 is a heterotetramer contain two large and two small subunits. The function of Caspase 4 is believed to be an inflammatory caspase, together with Caspase-1, Caspase-5, with a role in the immune system.

Apoptosis in mammalian cells is caused by activation of ICE-family proteases/caspases. The Caspase-4 Fluorometric Assay Kit provides a fast and simple means to assay the activity of caspases that recognize the sequence LEVD. The assay is according to spectrophotometric detection of the chromophore p-nitroanilide (pNA) after cleavage from the labeled substrate LEVD-pNA. Using a spectrophotometer or a microtiter plate reader at 400- or 405 nm can quantify the pNA light emission. Comparison of the absorbance of pNA from an apoptotic sample with an un-induced control allows determination of the fold increase in LEVD-dependent caspase activity.

III. Caspase-4 Assay Protocol:

A. Reagent Preparations

Aliquot enough 2X Reaction Buffer for the number of assays to be performed. Add DTT to the 2X Reaction Buffer immediately before use (10 mM final concentration: Add 10 µl of the 1.0 M DTT per 1 ml of 2X Reaction Buffer).

- B. Assay Procedure
- 1. Induce apoptosis in cells by desired method. Concurrently incubate a control culture without induction.
- 2. Count cells and pellet 5 x 10^6 cells.
- 3. Resuspend cells in 50 µl of chilled Cell Lysis Buffer and incubate on ice for 10 minutes.
- 4. Centrifuge for 1 min in a microcentrifuge (10,000 x g).
- 5. Transfer supernatant (cytosolic extract) to a fresh tube and put on ice.
- 6. Assay protein concentration.
- 7. Dilute 200 300 μg protein to 50 μl Cell Lysis Buffer for each assay.

8. Add 50 μ l of 2X Reaction Buffer (containing 10 mM DTT) to each sample. Add 5 μ l of the 4 mM LEVD-pNA substrate (200 μ M final conc.). Incubate at 37°C for 1 - 2 hour.

9. Read samples at 400 nm or 405 nm in a microtiter plate reader, or spectrophotometer using a 100-µl

micro quartz cuvette (Sigma), or dilute sample to 1 ml with Dilution Buffer and using regular cuvette (note: Dilution of the samples proportionally decreases the reading). You may also perform the entire assay in a 96-well plate.

Fold-increase in LEVD-dependent caspase activity can be determined by comparing readings of induced samples with the level of uninduced control.

Note: Background reading from cell lysates and buffers should be subtracted from the readings of both induced and the uninduced samples before calculating fold increase in caspase activity.

IV. Storage and Stability:

Store kit at -20° C (Store Cell Lysis Buffer, 2X Reaction Buffer, and Dilution Buffer at 4° C after opening). Protect LEVD-pNA from light. All reagents are stable for 1 year under proper storage conditions.

Problems	Cause	Solution	
Assay not working	• Cells did not lyse completely	• Resuspend the cell pellet in the lysis buffer and incubate as	
	• Experiment was not performed at optimal time after	described in the datasheet	
	apoptosis induction	• Perform a time-course induction experiment for apoptosis	
	• Plate read at incorrect wavelength	• Check the wavelength listed in the datasheet and the filter	
	• Old DTT used	settings of the instrument	
		• Always use freshly thawed DTT in the cell lysis buffer	
High Background	• Increased amount of cell lysate used	• Refer to datasheet and use the suggested cell number to	
	• Increased amounts of components added due to incorrect	prepare lysates	
	pipetting	• Use calibrated pipettes	
	• Incubation of cell samples for extended periods	• Refer to datasheet and incubate for exact times	
	• Use of expired kit or improperly stored reagents	• Always check the expiry date and store the individual	
	Contaminated cells	components appropriately	
		Check for bacteria/ yeast/ mycoplasma contamination	
Lower signal	Cells did not initiate apoptosis	• Determine the time-point for initiation of apoptosis after	
levels	• Very few cells used for analysis	induction (time-course experiment)	
	• Use of samples stored for a long time	• Refer to datasheet for appropriate cell number	
	• Incorrect setting of the equipment used to read samples	• Use fresh samples or aliquot and store and use within one	
	• Allowing the reagents to sit for extended times on ice	month for the assay	
		• Refer to datasheet and use the recommended filter setting	
		• Always thaw and prepare fresh reaction mix before use	
Samples with	• Uneven number of cells seeded in the wells	• Seed only equal number of healthy cells (correct passage	
erratic readings	• Samples prepared in a different buffer	number)	
	• Adherent cells dislodged and lost at the time of experiment	• Use the cell lysis buffer provided in the kit	
	• Cell/ tissue samples were not completely homogenized	• Perform experiment gently and in duplicates/triplicates;	
	Samples used after multiple freeze-thaw cycles	apoptotic cells may become floaters	
	• Presence of interfering substance in the sample	• Use Dounce homogenizer (increase the number of strokes);	
	• Use of old or inappropriately stored samples	observe efficiency of lysis under microscope	
		• Aliquot and freeze samples, if needed to use multiple times	

General Troubleshooting Guide for Caspase Colorimetric and Fluorometric Kits:

		• Troubleshoot as needed	
		• Use fresh samples or store at correct temperatures until use	
Unanticipated	Measured at incorrect wavelength	Check the equipment and the filter setting	
results	• Cell samples contain interfering substances	• Troubleshoot if it interferes with the kit (run proper	
		controls)	
General issues	Improperly thawed components	• Thaw all components completely and mix gently before use	
	• Incorrect incubation times or temperatures	• Refer to datasheet & verify the correct incubation times and	
	Incorrect volumes used	temperatures	
	• Air bubbles formed in the well/tube	• Use calibrated pipettes and aliquot correctly	
	Substituting reagents from older kits/ lots	• Pipette gently against the wall of the well/tubes	
	• Use of a different 96-well plate	• Use fresh components from the same kit	
		• Fluorescence: Black plates; Absorbance: Clear plates	
Note# The most probable cause is listed under each section. Causes may overlap with other sections.			

For research use only! Not to be used in humans.

Our promise

If the product does not perform as described on this datasheet, we will offer a refund or replacement. For more details, please visit <u>http://www.apexbt.com/</u> or contact our technical team.

Tel: +1-(832)696-8203 Fax: +1-832-641-3177 Email: sales@apexbt.com