

Product Information

Caspase-10 Colorimetric Assay Kit

I. Kit Contents:

Component	K2197-25	K2197-100	K2197-200	K2197-400	Part Number
	25 assays	100 assays	200 assays	400 assays	
Cell Lysis Buffer	25 ml	100 ml	100 ml	100 ml	K2197-C-1
2X Reaction Buffer	2 ml	4 x 2 ml	16 ml	32 ml	K2197-C-2
LEHD-pNA (4 mM)	125 μl	500 μl	2 x 0.5 ml	2 x 1 ml	K2197-C-3
DTT (1 M)	100 μ1	400 μ1	400 μ1	400 μl	K2197-C-4
Dilution Buffer	25 ml	100 ml	200 ml	400 ml	K2197-C-5

II. Introduction:

Apoptosis in mammalian cells is caused by activation of ICE-family proteases/caspases. The Caspase-10 Colorimetric Assay Kit provides a fast and simple means for assaying the activity of caspases that recognize the sequence AEVD. The assay is according to spectrophotometric detection of the chromophore p-nitroanilide (pNA) after cleavage from the labeled substrate AEVD-pNA. Using a spectrophotometer or a microtiter plate reader at 400 nm or 405 nm can quantify the pNA light emission. Comparison of the absorbance of pNA from an apoptotic sample with an un-induced control allows determination of the fold increase in AEVD-dependent caspase activity.

III. Caspase-10 Assay Protocol:

A. Reagent Preparation

Aliquot enough 2X Reaction Buffer for the number of assays to be performed. Add DTT to the 2X Reaction Buffer immediately before use (10 mM final concentration: add 10 μ l of 1.0 M DTT stock per 1 ml of 2X Reaction Buffer).

B. Assay Procedure

- 1. Induce apoptosis in cells by desired method. Concurrently incubate a control culture without induction.
- 2. Count cells and pellet $2 5 \times 10^6$ cells.
- 3. Resuspend cells in 50 μl of chilled Cell Lysis Buffer and incubate cells on ice for 10 minutes.
- 4. Centrifuge for 1 min in a microcentrifuge (10,000 x g).
- 5. Transfer supernatant (cytosolic extract) to a fresh tube and put on ice.
- 6. Assay protein concentration.
- 7. Dilute 100 200 µg protein to 50 µl Cell Lysis Buffer for each assay.
- 8. Add 50 μ l of 2X Reaction Buffer (containing 10 mM DTT) to each sample. Add 5 μ l of the 4 mM AEVD-pNA substrate (200 μ M final conc.). Incubate at 37 °C for 1 2 hour.
- 9. Read samples at 400 nm or 405 nm in a microtiter plate reader, or spectrophotometer using a 100-μl micro quartz cuvette, or dilute sample to 1 ml with Dilution Buffer and using regular cuvette (note: Dilution of the samples proportionally decreases the reading). You may also perform the entire assay in a 96-well plate.

Fold-increase in AEVD-dependent Caspase activity can be determined by comparing the results of treated samplers with the level of the uninduced control.

IV. Note:

Background reading from cell lysates and buffers should be subtracted from the readings of both induced and the uninduced samples before calculating fold increase in Caspase-10 activity.

V. Storage and Stability:

Store kit at -20° C (Store Cell Lysis Buffer, 2X Reaction Buffer, and Dilution Buffer at 4° C after opening). Protect AEVD-pNA from light. All reagents are stable for 1 year under proper storage conditions.

General Troubleshooting Guide for Caspase Colorimetric and Fluorometric Kits:

Problems	Cause	Solution	
Assay not working	Cells did not lyse completely	• Resuspend the cell pellet in the lysis buffer and incubate as	
	• Experiment was not performed at optimal time after	described in the datasheet	
	apoptosis induction	Perform a time-course induction experiment for apoptosis	
	• Plate read at incorrect wavelength	• Check the wavelength listed in the datasheet and the filter	
	• Old DTT used	settings of the instrument	
		Always use freshly thawed DTT in the cell lysis buffer	
High Background	• Increased amount of cell lysate used	• Refer to datasheet and use the suggested cell number to	
	• Increased amounts of components added due to incorrect	prepare lysates	
	pipetting	• Use calibrated pipettes	
	• Incubation of cell samples for extended periods	• Refer to datasheet and incubate for exact times	
	• Use of expired kit or improperly stored reagents	Always check the expiry date and store the individual	
	Contaminated cells	components appropriately	
		Check for bacteria/ yeast/ mycoplasma contamination	
Lower signal	Cells did not initiate apoptosis	• Determine the time-point for initiation of apoptosis after	
levels	• Very few cells used for analysis	induction (time-course experiment)	
	• Use of samples stored for a long time	Refer to datasheet for appropriate cell number	
	• Incorrect setting of the equipment used to read samples	• Use fresh samples or aliquot and store and use within one	
	• Allowing the reagents to sit for extended times on ice	month for the assay	
		Refer to datasheet and use the recommended filter setting	
		Always thaw and prepare fresh reaction mix before use	
Samples with	• Uneven number of cells seeded in the wells	Seed only equal number of healthy cells (correct passage)	
erratic readings	• Samples prepared in a different buffer	number)	
	Adherent cells dislodged and lost at the time of experiment	Use the cell lysis buffer provided in the kit	
	• Cell/ tissue samples were not completely homogenized	Perform experiment gently and in duplicates/triplicates;	
	Samples used after multiple freeze-thaw cycles	apoptotic cells may become floaters	
	• Presence of interfering substance in the sample	• Use Dounce homogenizer (increase the number of strokes);	
	• Use of old or inappropriately stored samples	observe efficiency of lysis under microscope	
		Aliquot and freeze samples, if needed to use multiple times	
		Troubleshoot as needed	
		• Use fresh samples or store at correct temperatures until use	
Unanticipated	Measured at incorrect wavelength	Check the equipment and the filter setting	
results	• Cell samples contain interfering substances	Troubleshoot if it interferes with the kit (run proper	
		controls)	

General issues	• Improperly thawed components	• Thaw all components completely and mix gently before use		
	Incorrect incubation times or temperatures	• Refer to datasheet & verify the correct incubation times and		
	• Incorrect volumes used	temperatures		
	Air bubbles formed in the well/tube	Use calibrated pipettes and aliquot correctly		
	Substituting reagents from older kits/ lots	• Pipette gently against the wall of the well/tubes		
	• Use of a different 96-well plate	Use fresh components from the same kit		
		Fluorescence: Black plates; Absorbance: Clear plates		
Next #The constraint billions in list decorate and continue Commence and continue and continue				

Note# The most probable cause is listed under each section. Causes may overlap with other sections.

For research use only! Not to be used in humans.

Our promise

If the product does not perform as described on this datasheet, we will offer a refund or replacement. For more details, please visit http://www.apexbt.com/ or contact our technical team.

Tel: +1-(832)696-8203 Fax: +1-832-641-3177 Email: sales@apexbt.com