

Product Name: Perifosine Revision Date: 01/10/2021

Product Data Sheet

Perifosine

Cat. No.:	A8309			
CAS No.:	1 <mark>577</mark> 16-52-4	Omerido		
Formula:	C25H52NO4P			
M.Wt:	461.67			
Synonyms:	NSC639966;KRX-0401;KRX0401;D-21266;D			
	21266			
Target:	PI3K/Akt/mTOR Signaling			
Pathway:	Akt			
Storage:	Store at -20°C			
	PEP	OPE P		

Solvent & Solubility

	insoluble in DMSO;	insoluble in DMSO; \geq 5.55 mg/mL in EtOH with ultrasonic; \geq 5.94 mg/mL in H2O with ultrasonic					
In Vitro	Preparing Stock Solutions	Solvent Concentration	1mg	5mg	10mg		
	Stock Solutions	1 mM	2.1660 mL	10.8302 mL	21.6605 mL		
	DELA	5 mM	0.4332 mL	2.1660 mL	4.3321 mL		
	AF	10 mM	0.2166 mL	1.0830 mL	2.1660 mL		

Please refer to the solubility information to select the appropriate solvent.

Biological Activity

	10	
Shortsummary	Akt inhibitor	
IC ₅₀ & Target	4.7 μM (AKT)	
In Vitro	Cell Viability Assay	
	Cell Line:	CRW22RV1 cells
	Preparation method:	The solubility of this compound in DMSO is
	Reacting conditions:	10 μM, 24 hours
	Applications:	To assess the effect of perifosine on radiation-induced apoptosis, the

1 | www.apexbt.com

		Annexin-FITC based flow cytometry analysis was used. Both nuclear			
		fragmentations with PI staining and translocated membrane			
		phosphatidylserine (PS) with Annexin V staining were measured. Both			
		perifosine and radiation induced significant apoptotic responses as shown by			
		the increase of apoptotic cells. When radiation (6Gy) and perifosine (10 $\mu\text{M})$			
	210	were combined, the number of apoptotic cells was significantly increased.			
	E	Perifosine alone did not induce cell cycle arrest at the G2/M phases and			
	ARA- Particular	perifosine did not affect the IR-induced G2/M checkpoint.			
	Animal experiment				
	Animal models:	Male Athymic Nude-Foxn1nu mice injected with CRW22RV1 cells			
	Dosage form:	Oral administration, in a loading dose of 300 mg/kg (2 × 150 mg/kg separated			
		by 12 hours) followed by daily maintenance doses of 35 mg/kg for 5 days			
	Applications:	Mice were separated into 4 groups: control, perifosine, radiotherapy and			
		combined therapy. Perifosine alone did not have a significant effect on tumor			
In Vivo	810	growth. However, perifosine can significantly increase radiation induced tumor			
	OFFICE	growth delay. To reach the 10-fold size of tumor volume to the initial volume in			
	and Antonio	the control, it took 15, 19, 41 and 59 days in control, perifosine only, radiation			
		only and combined treatment groups, respectively. It is noted that the combined			
		treatment led to a complete remission of the CWR22RV1 tumor.			
	Other notes:	Please test the solubility of all compounds indoor, and the actual solubility may			
		slightly differ with the theoretical value. This is caused by an experimental			
		system error and it is normal.			

Product Citations

1. Chen H, Wang X, et al. "AKT andits related molecular feature in aged mice skin." PLoS One. 2017 Jun 7;12(6):e0178969.PMID:28591208

See more customer validations on www.apexbt.com.

References

[1] Gao Y, Ishiyama H, Sun M, et al. The alkylphospholipid, perifosine, radiosensitizes prostate cancer cells both in vitro and in vivo. Radiation oncology (London, England), 2011, 6: 39.

Caution

FOR RESEARCH PURPOSES ONLY.

NOT FOR HUMAN, VETERINARY DIAGNOSTIC OR THERAPEUTIC USE.

Specific storage and handling information for each product is indicated on the product datasheet. Most APExBIO products are stable

2 | www.apexbt.com

under the recommended conditions. Products are sometimes shipped at a temperature that differs from the recommended storage temperature. Shortterm storage of many products are stable in the short-term at temperatures that differ from that required for long-term storage. We ensure that the product is shipped under conditions that will maintain the quality of the reagents. Upon receipt of the product, follow the storage recommendations on the product data sheet.

APEBIC

APExBIO Technology

www.apexbt.com 7505 Fannin street, Suite 410, Houston, TX 77054. Tel: +1-832-696-8203 | Fax: +1-832-641-3177 | Email: info@apexbt.com

